Why Fine-tune Large Language Models?
While models like GPT-4 and Llama show impressive zero-shot capabilities, fine-tuning on domain-specific data can significantly boost performance for specialized tasks. The challenge is doing this efficiently without the massive computational cost of full model retraining.
Parameter-Efficient Fine-Tuning with LoRA
from transformers import AutoModelForCausalLM
from peft import LoraConfig, get_peft_model
# Load base model
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
load_in_8bit=True,
device_map="auto"
)
# Configure LoRA
lora_config = LoraConfig(
r=8, # Rank
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
task_type="CAUSAL_LM"
)
# Apply LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# trainable: 0.06% of total parameters
Training Configuration
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
logging_steps=10,
save_strategy="epoch",
warmup_ratio=0.03,
lr_scheduler_type="cosine"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)
trainer.train()
Best Practices
💡 Key Tips
- Quality over quantity: 1K quality examples beat 10K noisy ones
- Consistent formatting: Use same prompt template throughout
- Start small: Test on 7B before scaling to 70B
- Monitor overfitting: Validate regularly on held-out data
- Learning rate: Use 1e-4 to 3e-4 for LoRA
Conclusion
PEFT techniques like LoRA make LLM fine-tuning accessible on consumer hardware. Focus on data quality, appropriate hyperparameters, and rigorous evaluation for best results.